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Single cardiomyocyte nuclear transcriptomes
reveal a lincRNA-regulated de-differentiation and
cell cycle stress-response in vivo
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Cardiac regeneration may revolutionize treatment for heart failure but endogenous
progenitor-derived cardiomyocytes in the adult mammalian heart are few and pre-existing
adult cardiomyocytes divide only at very low rates. Although candidate genes that control
cardiomyocyte cell cycle re-entry have been implicated, expression heterogeneity in the
cardiomyocyte stress-response has never been explored. Here, we show by single nuclear
RNA-sequencing of cardiomyocytes from both mouse and human failing, and non-failing
adult hearts that sub-populations of cardiomyocytes upregulate cell cycle activators and
inhibitors consequent to the stress-response in vivo. We characterize these subgroups by
weighted gene co-expression network analysis and discover long intergenic non-coding RNAs
(lincRNA) as key nodal regulators. KD of nodal lincRNAs affects expression levels of genes
related to dedifferentiation and cell cycle, within the same gene regulatory network. Our
study reveals that sub-populations of adult cardiomyocytes may have a unique endogenous
potential for cardiac regeneration in vivo.
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n the lifetime of an adult mouse or human heart, new

cardiomyocytes (CMs) are generated albeit at very low rates of

~1%!7%. On the other hand, adult zebrafish and neonatal
mouse hearts can fully regenerate upon surgical resection or
infarct injury*=®. Like the zebrafish and neonatal mouse, new
CMs in the adult mouse appear to arise by mitosis of pre-existing
CMs" 2, but a sufficient level of endogenous mitosis is lacking
to allow for adequate regeneration and repair during disease
progression7’ 8. Loss of the full capacity to regenerate occurs soon
after the seventh postnatal day (P7) when CMs in the neonatal
mouse heart exit the cell cycle®.

This highlights two key questions for the field of cardiac
regeneration: (a) what holds back adult CMs from dividing and
(b) can any adult CM be induced to divide? Indeed lineage tracin
studies in regenerating hearts of zebrafish®> and neonatal mice®,
show that proliferation potency is achieved by cell cycle re-entry
of pre-existing CMs. Consistent with this, Hi}])Po/Yap pathway
components® 10, the transcription factor MeisI'!, and a series of
microRNA including members of the miR-15 familylz, miR-199a,
miR-590'3, miR-17-92 cluster'®, miR-99/10, and Let-7a/c'® have
been separately implicated in the regulation of CM proliferation.
Kimura et al.'%, showed that while the majority of CMs in adult
mouse hearts permanently exit the cell cycle, a rare subset existing
in relatively hypoxic microenvironment of the myocardium,
retain proliferative neonatal CM features, and have smaller size,
mono-nucleation and lower oxidative DNA damage. Although
this specialized subset of CM may explain the ~1% endogenous
proliferation capacity in the adult myocardium, it remains
unexplored whether heterogeneity of the stress-response
gene expression changes among the larger majority of cell
cycle-arrested CMs would uncover a sub-population that could be
motivated to re-enter cell cycle.

We therefore undertook single CM nuclear RNA-seq of healthy
and failing hearts, and uncovered the heterogeneity of CM
transcriptomic  stress-response. Using co-expression analysis,
gene networks were constructed that pointed to key nodal
lincRNA, which we further validated in vitro to regulate major
de-differentiation and cell cycle genes. Our results altogether
suggest that sub-populations of adult CMs exist, and possess a
unique endogenous potential for cardiac repair by the targeting of
key regulator lincRNA.

Results

Single nuclear RNA-seq of left ventricular CMs in vivo.
Adult CMs are predominantly binucleated and undergo poly-
ploidisation and multi-nucleation during heart failure!”. To avoid
confounding differences in comparing single cells with different
number of nuclei, we reasoned that each single CM nucleus
represents the simplest unit of transcription. We therefore
performed single nuclear RNA-sequencing of PCM1* (pericen-
triolar material 1) CM nuclei isolated from the left ventricles of
transverse aortic constriction (TAC) mouse model of heart failure
and Sham-operated control mice, as well as human end-stage
failing hearts (non-ischemic dilated cardiomyopathy: DCM) and
age- and sex-matched healthy controls. We focused on the left
ventricle as it is the major site of pathological initiation of heart
failure. PCM1 is an established marker of CM nuclei® '8 19
(Supplementary Fig. 1A, B). Since single-cell transcript detection
stabilizes at low read depths?*~2%, we performed RNA-seq to an
average depth of 8.5+ 3.29 M mapped reads per sample, for a
total of 359 single PCM1* CM nuclei from both mouse
and human left ventricles (Supplementary Table 1) using a well-
published microfluidic single-cell transcriptomic platform?0-24,
Correlations showed good agreement of single nuclear expression
with matched experimental pooled CM nuclei (r=0.83 Sham,
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r=0.86 TAC, Supplementary Fig. 1D, G), matched in silico
pooled CM nuclei (r=0.94 Sham, r=0.98 TAC, Supplementary
Fig. 1C, F), and even with matched bulk left ventricles (r=0.61
Sham, r=0.68 TAC, Supplementary Fig. 1E, H), which contain
CM as well as other cell types such as fibroblasts and endothelial
cells. In all cases, correlation values plateaued once we had
sampled ~30 nuclei (Supplementary Fig. 1K-L), similar to
saturation observed in previous single-cell RNA-seq reports??~24,
demonstrating that our chosen sample size had sufficiently
exceeded this saturation limit. A previous mouse RNA-seq
paper using a similar TAC induced pressure overload mouse
model at 8-week post TAC time point reported using a cutoff of
at least fragments per kilobase per million mapped reads (FPKM)
>3 (~1 copy per cell) in at least 1 heart to detect cardiac-relevant
genes in bulk mouse heart tissue?”. In view of potential
noise issues in single nuclear RNA-seq, we set a more stringent
criterion for genes to be expressed if it had at least FPKM >4 in
at least 5 samples. In total, we achieved ~4.29 billion mapped
reads (Supplementary Table 1) and identified a total of 4787 and
7642 genes expressed in Sham and TAC mouse CM nuclei
respectively (Supplementary Data 1 and 2). Notably, previous
whole tissue RNA-seq comparison of TAC vs. Sham mouse hearts
reported a dramatic increase in the number of differentially
expressed genes (1435 genes) in hearts at the 8-week post-TAC
time point compared to 1-week post-TAC, consistent with much
more extensive cardiac remodeling at 8-week and similar to the
large increase in expressed genes we found at this same time
pointzs.

To address any potential issue of technical variability in single
nuclear RNA-seq, we performed several controls. First, we
undertook technical replicates of the same nuclear RNA-seq
samples using three independent library preparations and found
good correlation (r=0.99) across all three technical replicates
(Supplementary Fig. 2A-C), reflecting a consistent library
preparation procedure, and the absence of a batch effect in this
regard. Second, we took the same nuclear RNA-seq samples with
identical library preparation we had previously sequenced
and performed sequencing again and found similarly good
correlation (r=0.94) (Supplementary Fig. 2D). Next, we loaded
ERCC spike-in mix at pre-defined concentrations onto two
separate microfluidic Cl1 chips and again recovered good
correlation (r=0.99) between single samples within the same
chip (Supplementary Fig. 2E, F), and also across two independent
C1 chips (r=0.99, Supplementary Fig. 2G). Observed FPKM
levels for the spike-in mix were consistent at expected
concentrations (Supplementary Fig. 2H). Taken together, these
controls excluded any significant technical variability in our
single nuclear RNA-seq procedure.

Core CM gene regulatory network. First, our single nuclear
RNA-seq data set allowed us to define molecular markers that are
present in every healthy CM nucleus. We identified 6 “core genes”
that were the most highly expressed in every Sham nucleus, and
also in healthy unoperated nuclei, with low coefficient of variation
(CoV; Fig. la, b). We recognized that the consistent high
expression specifically of Tnnt2, Tpml, and Myl2, and not other
previously assumed markers such as myosin heavy chain
genes, imply their ideal suitability as markers for CM identity.
Interestingly, the other three core genes were non-coding RNAs,
reflecting a previously unappreciated abundance or function of
these non-coding RNAs in CM nuclei.

Heterogeneity and sub-populations of CMs in healthy and
failing hearts. We next explored heterogeneity across samples.
Instead of assessing the spectrum of expression level for each
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Fig. 1 Single nuclear RNA-seq reveals CM heterogeneity. a, b Core cardiac genes that are most highly expressed in every CM nucleus (a) exhibit high
expression with low coefficient of variation (b). ¢ Highly expressed genes in TAC nuclei have higher penetrance than highly expressed genes in Sham

nuclei. Spearman’s rank correlation (r=0.90, p < 2.2e7'®) shows good correlation between average expression level and penetrance. d Density distribution
of correlation shows higher correlation in TAC nuclei than in Sham nuclei. p < 2.2e7'® from Mann-Whitney U test. e, f Unsupervised hierarchical clustering
e and PCA f of single nuclear RNA-seq of CM reveal that CM nuclei accurately segregate into clusters specific to Sham or TAC subgroups (subgroup a, b)
and is replicated across biological repeats (Rep) f. g Ranked Spearman correlation plot shows higher correlation in TAC nuclei than in Sham nuclei, which is

replicated across biological repeats (Rep)

gene, we considered each sample categorically as either expressing
or not expressing each gene; leading to a “penetrance” value for
each gene, defined as the percentage of samples expressing the
gene. In general, highly expressed genes were expressed in the
vast majority of samples (Spearman ranked correlation r=0.90,
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p <2.2¢71) but we noted that this observation was more so in
TAC than in Sham (Fig. 1c). Consistent with the notion that CMs
responded to TAC stress by activating a unifying transcriptional
program across individual nuclei, we found that among TAC
nuclei there was a narrower distribution of correlation values
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Fig. 2 LincRNAs in nodal hubs of gene regulatory networks. a, b WGCNA identifies three distinct gene modules (Healthy, Disease 1 and Disease 2) (a) in
Sham and TAC nuclei that represent expression signatures of specific Sham or TAC nuclear subgroups (b). c-e WGCNA reveals candidate lincRNAs in
nodal hubs bearing the highest connectivity with other genes within the gene regulatory network modules. Gas5 and Sghrt are in nodal hubs within disease
module 2 (e) and highly correlated with expression of other genes in the network such as Nppa, Dstn, Ccngl, and Ccnd?2. Size and color of bubbles represent
strength and significance of connectivity. Key enriched gene ontology (GO) terms are listed for each module (p < 0.05 Fisher's exact test). f-h Scatterplots
showing the expression of genes from the 3 gene modules at the single-nuclear level (f), at pooled nuclei level (g) and matched bulk left ventricle tissue
RNA-seq (h). i Significant differential expression of genes from the three gene modules between Sham and TAC samples is detected only by single nuclear

RNA-seq, and not by pooled nuclei or bulk tissue RNA-seq
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Fig. 3 Human single cardiomyocyte nuclear RNA-seq. a Core cardiac genes in human CMs are similar to mouse. b-d Unsupervised hierarchical clustering
(b), PCA (c) and Spearman correlation analysis (d) produced 2 distinct subgroups in each of control and dilated cardiomyopathy (DCM) nuclei. e Density
distribution of correlation shows narrower distribution for DCM nuclei compared to control. P value from Mann-Whitney U test. f WGCNA identifies gene
modules (healthy 1, healthy 2, disease 1, and disease 2) that are specific for DCM or control nuclear subgroups. g, h Classifiers from human gene modules
show differential expression at single nuclear level (g), but not in matched bulk left ventricle RNA-seq (h)

than Sham (p<22¢7'® Mann-Whitney U-test, Fig. 1d).
Furthermore, by using either unsupervised hierarchical clustering,
principal component analysis (PCA), or ranked Spearman’s
correlation, we consistently detected two distinct large subgroups
of nuclei in Sham and TAC respectively, replicated in a further set
of biological repeats (Fig. le-g).

We performed weighted gene correlation network analysis
(WGCNA)?® for the nuclear subgroups and identified highly
correlated gene modules (Fig. 2a, b, Supplementary Data 3).
Gene ontology analysis for the healthy module showed significant
enrichment of genes for RNA binding, mRNA processing, RNA
splicing, cardiac muscle cell differentiation, cell cycle arrest,
cardiac muscle cell development and heart contraction
(Supplementary Data 4, Fig. 2c). Disease module 1 contained
apoptosis and autophagy genes, reflecting well-known pathways
in heart failure?’, and enrichment of genes in regulation of cell
motion, transcription factor binding, actin filament based process,
and actin cytoskeleton organization (Supplementary Data 4,
Fig. 2d). Disease module 2 was enriched for genes in translation,
generation of precursor metabolites, oxidative phosphorylation,
response to oxidative stress, cell proliferation, and cardiac muscle
tissue development, including well-known fetal reprogramming

NATURE COMMUNICATIONS | 8:225

markers Nppa and Nppb (Supplementary Data 4, Fig. 2e).
All three modules also contained important cardiac-expressed
genes known to cause human dilated cardlomyopathg
hypertrophic cardiomyopathy, and congenital heart disease®®
reflecting the overall physiological relevance of our gene modules
to cardiac function (Supplementary Data 4).

Notably, genes in these modules now form a set of novel
classifier markers because they are significantly differentially
expressed in sub-populations of CM nuclei across Sham and TAC
(Fig. 2f, i), otherwise masked by pooled and bulk tissue RNAseq
approaches (Fig. 2g-i, Supplementary Data 5 and 6). Prominent
exceptions to this remain classical fetal reprogramming genes
such as Myh7, Nppa, and Nppb (Fig. 2h, Supplementary Data 6),
which were stress-genes readily detectable even at bulk tissue
level.

Single nuclear RNA-seq of CM from human left ventricles.
We extended the same analysis to human CM nuclei from left
ventricles of male DCM patients with end-stage heart failure
compared with age-matched, male healthy controls. Remarkably,
we found similar highly expressed core cardiac genes, nuclear
subgroups, and reduced heterogeneity in DCM compared

| DOI: 10.1038/541467-017-00319-8 | www.nature.com/naturecommunications 5
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to controls (Fig. 3a-f). Gene Ontology analysis for gene
modules (Supplementary Data 7 and 8) gave similar functional

annotations as mouse (Supplementary Data 4). Differential

expression of the dedifferentiation marker DSTN was detected
at the single nuclear level, but not in bulk tissue RNA-seq
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insight into gene co-expression, we undertook “Quadrant
Analysis” (Methods section) to compare expression profiles of
sets of candidate genes, curated based on previously implicated
importance for relevant CM biology. We started with
“Proliferation” and “Negative regulators of Proliferation” markers
in Sham and TAC mouse samples (Supplementary Table 4),
and found a significant shift of nuclei from Sham in Q3 (Quad-
rant 3: not expressing either set of markers) to TAC in Q2
(Quadrant 2: co-expressing both sets of markers: 44.4%; p <
3.237e"%7 Fisher’s exact test; Fig. 4a). This suggested that TAC
nuclei activated proliferation gene transcription, and the same
nuclei concurrently expressed negative regulators of proliferation
acting as “molecular brakes” thus preventing successful
cytokinesis. Among the candidate markers, Ccnd2 and Ccngl
were the major ones differentially expressed in the subgroup of
TAC nuclei (Supplementary Fig. 3A, B). Of note, transgenic
overexpression of Ccnd2 promotes high rates of cardiomyocyte
DNA synthesis and increased proliferation in adult mouse CMs>%
33, while overexpression of Ccngl promotes DNA synthesis, but
inhibits cytokinesis leading to polyploidy and multinucleation!”.
Endogenous rate of division of pre-existing adult mouse CM is
very low, with only a small increase during myocardial stress'.
Accordingly, Q4 nuclei with high proliferation marker expression
alone (6.4%, Q4; Fig. 4a) could be nuclei that retained the
uninhibited potential for cytokinesis. Alternatively, there may be
negative regulators in Q4 nuclei yet to be identified. Notably, only
with the single nuclear resolution could we attain these results
because the same population shifts were neither seen in pooled
CM nuclei nor bulk left ventricle tissue (Fig. 4b, c).

Early progenitor markers and markers of dedifferentiation.
Next, we performed quadrant analysis for co-expression of
cardiac progenitors and cardiac transcription factors, and
observed upregulation of both markers in a large subset of TAC
nuclei (Q2: 42.9%, Fisher’s exact test, p=2.548¢"%°, Fig. 4d,
Supplementary Table 4). This was again only detectable by single
nuclear analysis, and not by pooled or bulk tissue analyses
(Fig. 4e, f). Scal/Ly6a, Kdr, and CD34 as well as Hand2, Nkx2-5,
Mef2a, and Mef2c were the major expressed markers in the
subset of TAC CM (Fig. 4j). Endogenous c-Kit derived CMs were
previously detected only at the very low percentage of ~0.03% in
mouse hearts in vivo>*. Among our samples, c-Kit was detected
in only three mouse nuclei (0.83% of all nuclei). The cardiac
progenitor marker Is/I was undetected in any sample. In contrast,
high expression of Scal/Ly6a, Kdr, CD34 in failing adult CMs is
surprising because these are markers of hematopoietic and
endothelial grogenitors that only give rise to very few adult CM
in vivo’> 3°. Moreover, Scal® cardiac progenitor cells do not
express cardiac contractile genes®> 3¢, We therefore assessed
whether Scal* nuclei were from progenitor cells or pre-existing
adult CMs. In support of the latter, Scal® nuclei co-expressed
high abundance of core cardiac genes (Tnnt2, Myl2, Tpml)

(Fig. 4j). Furthermore, Scal® nuclei made up a large proportion
of TAC nuclei (Q2 and Q4: 81.0%; Fig. 4j) across biological
replicates (70.3%; Supplementary Fig. 3C), contradicting the
alternative possibility that these are progenitor-derived CMs.
We confirmed low basal expression of Scal RNA and cell-surface
SCAL1 protein expression in Sham CM and strong upregulation
in TAC CMs by single molecule RNA FISH (fluorescent in situ
hybridization) and immunofluorescence (Fig. 4k-n). Notably, we
show that Scal* CMs co-expressed Tnnt2 RNA and protein
(Fig. 4k-n), confirming their identity as adult CMs, and not
fibroblasts or endothelial cells.

We further hypothesized that stressed nuclei exhibiting
the fetal gene response would co-express dedifferentiation
markers. Indeed, while TAC nuclei clearly had high expression
of fetal genes, high co-expression with dedifferentiation markers
was again only revealed by single nuclear analysis (Fig. 4g-i).
Overall, key to the heterogeneous spectrum of stress-response
was that upregulated co-expression of progenitor markers (Scal
and Kdr), dedifferentiation markers (Dstn, Msn, and Actn2),
and cell-cycle genes (Ccnd2 and Ccngl) were limited to the
subset of TAC nuclei in Q2 and Q4 (Fig. 4j). This finding
is important because it suggests that transcription of dediffer-
entiation and cell-cycle entry genes during stress-response in vivo
could be controlled by common regulating factor(s) within each
of these nuclei.

Long intergenic non-coding RNA in nuclei of CMs. In effort to
identify novel gene regulators in our nuclear RNA-seq data sets,
we discovered a large number of long intergenic non-coding RNA
in nuclei of CMs (LINCMs). Some of these were highly co-
expressed with genes within our healthy and disease modules
(Supplementary Data 3; Fig. 2c-f), raising the possibility that
some LINCMs could play a regulatory role for coordinating the
stress-response within gene modules. To ensure reliable annota-
tion of LINCMs, we used Coding Potential Assessment Tool
(CPAT)* to rule out transcripts with coding potential. This led to
a curated list of 464 LINCMs (Supplementary Data 9), of which
30.4% (141/464) were novel and 69.6% (323/464) were previously
reported in public databases (ENSEMBL and NONCODE) or
inde2pendent published cardiac transcriptome data sets (Fig, 5a)>>
38-42_ We reasoned that we have detected more lincRNA because
our RNA-seq was performed on nuclei instead of whole cells.
Indeed, 40.3% (187/464) of our LINCMs were specifically
detected only in our nuclear RNA-seq and not in matched bulk
left ventricle RNA-seq (Fig. 5b). To ensure a fair comparison
between the single nuclear and bulk tissue RNA-seq, we used
either similar sequencing depths or ~8-fold higher sequencing
depths in the bulk tissue, and the conclusion was the same: that
our novel LINCMs were detectable only via the nuclear approach,
and not in bulk tissue. It is hence possible that bulk tissue RNA-
seq reads are predominantly occupied by the large pool of cyto-
plasmic mRNA, diluting out lowly expressed lincRNAs that are

Fig. 4 Quadrant analyses reveal sub-populations of CM. a-¢ Quadrant analysis for Proliferation vs. Negative regulators of proliferation genes identifies
increased co-expression in individual TAC nuclei (Q2; 44.4%; p = 3.237e™97 Fisher's exact test), only detectable by single nuclear RNA-seq (a), and not in
pooled nuclei (b) or matched bulk left ventricle RNA-seq (c). Inset: histogram of nuclei distributed across quadrants. Blue represents Sham and red
represents TAC nuclei. d-f Quadrant analysis for cardiac progenitor vs. cardiac transcription factor gene expression shows increased co-expression upon
TAC stress in single CM nuclei d (Q2; 42.9%; p = 2.548e79° Fisher's exact test), again not detectable in pooled nuclei or bulk tissue RNA-seq (e, f).
g-i Increased co-expression of fetal reprogramming genes and dedifferentiation markers under TAC stress only detected in single nuclear RNA-seq (g)
(Q2; 58.73%; p=0.001371 Fisher's exact test) and not in non-single approaches (h, i). j High co-expression of cardiac progenitors, cardiac transcription
factors, dedifferentiation, proliferation, and negative proliferation markers is confined to single nuclear TAC samples in Q2 and Q4. k, I Single molecule
RNA FISH shows Scal upregulation and co-expression of Tnnt2 in isolated adult mouse CMs from TAC hearts | compared to Sham k. Number of Scal*
Sham CMs: 5/13; ScaT" TAC CMs: 38/55; all together from 2 Sham and 3 TAC biological replicates. m, n Immunofluorescence confirms increase in
cell-surface SCAT1 protein expression in TAC CMs (n) compared to Sham (m). Number of SCA1T* Sham CMs: 8/23; SCAT" TAC CMs: 43/66; all together

from 2 Sham and 3 TAC biological replicates. Scale bar represents 20 pm
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Fig. 5 LINCM expression validated by single molecule RNA FISH. a Single nuclear RNA-seq identifies 141 novel lincRNAs in nuclei of CMs (LINCMs) that are
not in current public databases (ENSEMBL and NONCODE) nor published cardiac transcriptome data sets. b Single nuclear RNA-seq identifies LINCMs
that are not detectable in matched left ventricle bulk tissue RNA-seq, explained by the dilution of reads in cytoplasmic mMRNA pool. ¢ Active H3K27Ac
enhancer chromatin regions proximal to LINCMs are enriched in MEF2 transcription factor binding motif and functionally annotated by GREAT analysis to
have cardiac expression and phenotypes. d Sites of active transcription demonstrated by co-localization of exonic and intronic probes (asterisk) in nucleus.
Scale bar represents 5 pm. e-m Single molecule RNA FISH validates the expression of LINCMs in isolated adult mouse CMs. n-q Positive controls for highly
abundant core genes Tpm1, Tnnt2, Myl2, and Malatl. ¥, s Negative controls with no-probe control (NPC) (r) and sense probe (s) to confirm signal
specificity. Scale bar represents 10 pm. t, u Gas5 is upregulated in TAC CM and co-localizes with perinuclear Nppa transcripts. v, w Sghrt is upregulated and
localizes to the cytoplasm of TAC CM. x, y LINCM5 is downregulated in TAC CM. Scale bar represents 10 pm

specifically nuclear retained, which are therefore not readily
detected in bulk RNA-seq. Indeed, as an example, we found that
LINCMS is barely detectable in bulk left ventricle by reverse
transcription PCR (Supplementary Fig. 4A, B) but have high
abundance in our single nuclear RNA-seq, and confirmed to be
nuclear localized by RNA FISH (Fig. 5h).

We explored the possibility of interactions between transcrip-
tion factors and our list of LINCMs by performing motif analysis
of empirical H3K27Ac ChIP-seq peaks demarcating active
enhancer chromatin regions*> proximal to LINCMs loci. There
was significant enrichment of cardiac transcription factor
co-occupancy motifs** at these loci (Fig. 5c, Supplementary
Table 2). Notably, MEF2, a central transcription factor for cardiac
development and myocardial stress-response*® was enriched in
57.1% of loci. To provide functional annotation of LINCM lodi,
Genomic Regions Enrichment of Annotations Tool (GREAT)
analysis®> showed significant specific enrichment of cardiac
expression and functions (Supplementary Table 3). Global
correlation of expression levels between LINCM with nearby
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genes, including cardiac protein-coding genes, strengthened
with increasing linear chromosomal distance from LINCM loci
(Supplementary Fig. 4C), implying that LINCMs may act through
distal regulatory interactions or long-range chromosomal looping
interactions. Taken together, this suggests our LINCMs are
biologically relevant to CM and could serve important epigenetic
regulatory functions.

To ensure that our LINCMs exist in CMs and are not simply
sequencing artifacts, we successfully validated 11 out of 12
candidate LINCMs by reverse transcription PCR (Supplementary
Fig. 4A, B) and single molecule RNA FISH*® 47 in isolated adult
CM (Fig. 5d-s) that concurrently demonstrated their sub-cellular
localization patterns. Intronic and exonic probes co-localized at
bright foci within the nucleus (Fig. 5d, asterisk), representing sites
of active transcription®®. Positive controls included highly
abundant core cardiac genes Tpml, Tnnt2, Myl2, and Malatl
(Fig. 5n-q) and negative controls included no-probe control and
sense probe controls (Fig. 51, s). We confirmed that LINCM3
(also called Gas5) and LINCM9 (previously annotated
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Fig. 6 Gas5 and Sghrt regulate co-regulated network gene expression. a Strategy to KD Gas5 or Sghrt independently in isolated adult TAC CMs in vitro.
Cartoon from openclipart.org, under a CCO 1.0 Universal license. b, ¢ In vitro KD of Gas5 or Sghrt in adult mouse CMs using GapmeRs is efficient and
reproducible across biological replicates. N =5 biological replicates. d-g Gas5 KD in TAC CMs results in significant reduction of Nppa, Dstn, Ccngl, and
Ccnd2 expression. Sghrt KD in TAC CMs results in significant increase in Ccngl and reduction in Ccnd2 expression. N =5 biological replicates. Data

represented as mean + s.e.m. *p < 0.05, **p < 0.01, and ***p < 0.001

1810058i24Rik, which we now call “Singheart”, Sghrt) were
upregulated in TAC CMs, while LINCM5 was downregulated in
TAC CMs as compared to Sham CMs (Fig. 5t-y). Gas5 is located
in the nucleus of Sham CMs (Fig. 5t) but is upregulated under
TAC stress and co-localized with Nppa transcripts in the
perinuclear regions of TAC CMs (Fig. 5u). Sghrt has low basal
expression in nuclei and cytoplasm of Sham CMs (Fig. 5v) but is
upregulated under TAC stress (Fig. 5w). Indeed, among all the
lincRNA candidates in our foregoing network analysis, Gas5 and
Sghrt specifically occupied highly inter-connected nodal hubs
within Disease module 2 (Fig. 2e), and stood out with the highest
Eigengene-based connectivity KME, pointing to their potential
key role as regulators of other genes within the same gene
regulatory network.

LincRNA regulate dedifferentiation and cell-cycle genes.
Our discovery of Gas5 and Sghrt in key nodal hubs presented
the testable hypothesis that they regulate co-expressed genes
within the same gene regulatory network including cell cycle
genes: Ccngl and Ccnd2 and others: Nppa and Dstn (Fig. 2e;
Supplementary Data 3). To functionally test this hypothesis,
we performed knockdown (KD) of Gas5 or Sghrt separately on
isolated adult mouse CM (TAC-operated mice) using antisense
LNA based GapmeRs and extracted RNA 48 h post KD (Fig. 6a).
To ensure that reliable KD was achieved, we performed
quantitative PCR (qPCR) and validated that Gas5 and Sghrt were
significantly reduced by 67.3% and 86.0% respectively (Fig. 6b, ¢;
Gas5 expression level after KD: 32.7% +8.29% s.e.m; Sghrt
expression level after KD: 14.0% =+ 3.50%; s.e.m.). For negative
controls, we used both non-targeting negative control oligo as
well as mock-transfected control.

KD of Gas5 in adult TAC CMs significantly reduced the
expression levels of Nppa, Dstn, Ccngl, and Ccnd2 (Fig. 6d—§).
Prior evidence show that Gas5 accumulates upon §rowth arrest’®,
is expressed in many tissues including the heart*®, and regulates
apoptosis?® and proliferation® in cancer cells. Sghrt, on the other
hand, is a novel lincRNA with no previously described function.
KD of Sghrt caused a significant increase in Ccngl, reduction in
Ccnd2, but no significant change in Nppa or Dstn expression
(Fig. 6d-g). Altogether, these confirm that nodal LINCMs (Gas5
and Sghrt) regulate the transcriptional levels of genes in the same
gene regulatory network.
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Discussion

Our single nuclear RNA-seq study of CMs from failing and
non-failing mammalian hearts reveals for the first time,
heterogeneity of the in vivo myocardial stress-gene response. We
noted distinct sub-populations of CMs and uncovered gene
regulatory networks specific for each sub-population, displaying
specific ~ sub-group  upregulation of cell cycle, and
de-differentiation genes in the disease stress response. We further
identified LINCMs that occupy key nodal hubs in gene regulatory
networks, and validated that KD of nodal LINCMs (namely,
Gas5 and Sghrt) leads to corresponding changes in the expression
of co-regulated network genes, including those known to control
CM cell cycle. Our findings suggest that nodal LINCMs may
therefore act as key regulators of CM cell cycle during the
endogenous myocardial stress response, and further work is
warranted to investigate their direct effects on cardiac
regeneration.

Other candidate regulators of CM proliferation have been
previously reported. Conditional deletion of the homeodomain
transcription factor Meis! in the postnatal mouse heart increased
CM proliferation'!. Postnatal inhibition of miR-15 family
prolonged the proliferative capacity of neonatal CM'2. Through a
systematic screen with miRNA mimics, 2 inducers of CM
proliferation, miR-199a and miR-590, were reported!3. miR-99/
100 and Let-7a/c have been reported to regulate the cardiac
regenerative response in zebrafish and mouse hearts!”.
Hippo-deficient embryos had overgrown hearts with elevated CM
proliferation!®. Mitogens including neuregulin®!, periostin®,
and FGF1, in combination with p38aMAPK inhibition>3,
also promote adult CM cell cycle re-entry and completion of
cytokinesis, although this effect may be restricted to a
mono-nucleated subset of CM in rodents'® > >2, The low, but
significant, degree to which each pathway is separately able to
activate a small number of CM each time to undergo complete
cytokinesis, has begged the question of whether this refers a
single unique subset of CMs, or whether there are many subsets
of CMs, each with unique pathways to activate cell cycle re-entry
that are not co-linear. Our report of CM heterogeneity is
consistent with a diverse spectrum of gene expression abundance
from sample to sample. It may also be that the dominance of each
pathway is stochastic and fluctuates in the lifetime of each CM,
but certainly this notion is coherent with the teleological need for
the heart to maintain cell-cycle arrest by employing as
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many pathways of inhibition as it needs. Still, our analysis has
uncovered at least one subpopulation in which both cell cycle
activators and inhibitors are co-activated during the disease
stress-response.

The gene regulatory networks and LINCMs derived from our
single nuclear RNA-seq now serve as an invaluable resource for
identifying key endogenous regulators of cardiac regeneration.
Meanwhile, the mitotic potential found in a substantial subset
of adult CM in vivo raises the hope that targeting negative
regulators of CM proliferation may one day lead to successful
cardiac regenerative therapy.

Methods

Experimental animals. Ethical approval was from the National University of
Singapore IACUC. Male C57BL/6 8-week post TAC and Sham-operated mice
(16 weeks old) were used for all experiments.

Single nuclear RNA-seq library preparation. Single nuclei were isolated

from snap-frozen mouse and human left ventricle and processed by mechanical
dissociation at 4000 Hz (4 x 20 s pulses) in Lysonator cartridges (SG Microlab
devices) and counterstained with DAPI. CM nuclei were stained with PCM1
antibody (1:500, HPA023374, Sigma), secondary anti-rabbit Alexa 488 (1:500) or
Alexa 568 antibody (1:500), and captured individually using C1 Single Cell

Auto Prep system (10-17 uM mRNA seq chip, Fluidigm). Automated imaging
of captured nuclei was performed on an inverted microscope (Olympus) with
10x objective (Olympus) and CCD camera (Axiocam MR3, Zeiss) to confirm the
identity of wells containing only single PCM1* CM captured. PCM1* CM nuclear
RNA-seq libraries were prepared using Nextera XT DNA sample preparation kit
(Ilumina). Each sample was sequenced with paired end 2 x 101 bp reads on HiSeq
2500 (Illumina).

Human left ventricle samples. Human left ventricles were collected with a
protocol approved by the Papworth (Cambridge) Hospital Tissue Bank Review
Board and the Cambridgeshire Research Ethics Committee (UK). Written consent
was obtained from all individuals according to the Papworth Tissue Bank protocol.
DCM left ventricles were from patients undergoing cardiac transplantation for
end-stage DCM>* *°. At the time of transplantation or donor harvest, whole
hearts were removed after preservation and transported in cold cardioplegic
solution (cardioplegia formula and Hartmann’s solution). Following analysis by a
pathologist, left ventricle segments were cut and stored immediately in RNAlater
(Ambion). Healthy normal left ventricles were from age-matched male individuals,
through Papworth Hospital or Ethical Tissue (University of Bradford), governed by
the UK Human Tissue Authority.

Mouse surgery and isolation of mouse ventricular CM. TAC surgery was per-
formed as ;)reviously described®®. CM isolations were performed as previously
published®” by enzymatic dissociation using perfusion buffer, 37 °C pre-warmed
40 ml enzyme solution (Collagenase II 0.5 mg/ml (Worthington), Collagenase IV
0.5 mg/ml (Worthington), and Protease XIV 0.05 mg/ml) at a rate of 2 ml/min.
Enzymes were neutralized with fetal bovine serum (FBS) to final concentration of
5%. Cell suspensions were filtered through 100 pm nylon mesh cell strainers
(Thermo Fisher Scientific) and allowed to settle by gravity. Calcium concentration
was increased gradually to 1.0 mM. Cells were resuspended in plating medium
containing M199 medium with glutamine (2 mM), BDM (10 mM), and FBS (5%),
plated onto laminin-coated glass coverslips (#1, Thermo Fisher Scientific) and
incubated for 1h at 37 °C in a humidified environment with 5% ambient CO,.
Non-attached cells were removed by gentle washing in PBS.

Single molecule RNA FISH. Isolated CM adhered onto laminin coated #1
coverslips (ThermoScientific) were fixed for 10 min at r.t.p with Fixation Buffer
(3.7% formaldehyde in PBS), washed twice in 1x PBS and permeabilized with 70%
EtOH at 4 °C for at least an hour. RNA FISH was performed using 20-mer Stellaris
Biosearch Probes for LINCMs and core genes conjugated to Quasar 670 or CAL
Fluor Red 610. Briefly, cells were washed with Wash Buffer (10% formamide in 2x
SSC) prior to overnight 37 °C hybridization with target probes (125 nM) in
Hybridization buffer (100 mg/ml Dextran Sulfate, 10% Formamide in 2x SSC).
After hybridization, cells were washed in Wash Buffer for 30 min at 37 °C,
counterstained with DAPI (5 ng/ml in Wash Buffer) for 30 min at 37 °C, and
washed in 2x SSC at r.t.p. Coverslips were transferred onto glass slides with
mounting medium (Vectashield) and imaging was performed immediately on
upright microscope (Nikon Ni-E) with 100x Objective (Nikon) on a cooled CCD /
CMOS camera (Qi-1, Qi-2,Nikon).

For the notable exception of Scal/Tnnt2 RNA FISH co-staining, RNA FISH was
performed using 50-mer ZZ ACD RNAScope probes due to the short unique
sequence of Scal available for probe design and high degree of homology to other
members of Ly6 family. Cells were fixed and permeabilized as above in 70% EtOH,
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washed in 1x PBS and 1x Hybwash buffer for 10 and 30 min respectively at r.t.p.
prior to incubation with 1x Target Probe Mix at 40 °C for 3 h. Cells were washed
thrice in 1x Hybwash at r.t.p, incubated in 1x Pre Amp Mix for 40 min at 40 °C,
washed thrice in 1x Hybwash at r.t.p, incubated in 1 x Amp Mix for 30 min at 40 °
C, washed twice in 1x Hybwash before incubation in 1x Label Probe Mix (Alexa
Fluo 488, ATTO0550) at 40 °C for 25 min. Cells were washed thrice in 1x Hybwash
in dark at r.t.p, counterstained with DAPI (5 ng/ml) prior to mount and imaging.

Immunofluorescence. Isolated CM adhered onto coverslips were fixed in 4%
formaldehyde and permeabilized with 0.5% Triton X for 10 min at r.t.p, prior

to blocking in 5% BSA/PBS at r.t.p for 30 min. Cells were then incubated with
primary antibodies diluted in 3% BSA/PBS overnight at 4 °C. Primary antibodies
used include TNNT2 (1:100, ab8295, Abcam). SCA1 immunofluorescence was
performed using two independent antibodies from two different companies SCA1
(1:50, E13 161-7, Abcam), SCA1 (1:100, AF1226, R&D) for technical validation
and no Triton X was used for permeabilization to preserve cell-surface epitopes of
Sca-1. Cells were washed thrice in 1x PBS, incubated in appropriate fluorescent
secondary antibodies Donkey anti Rat Alexa Fluo 488, Donkey anti Goat Alexa
Fluo 488 or Rabbit anti Mouse Alexa Fluo 568 and DAPI (5 ng/ml) for 60 min at r.
t.p in dark. Cells were washed thrice in 1x PBS in dark before being mounted onto
slides and imaged on an upright microscope Ni-E (Nikon).

Knockdown of LINCMs. LNA GapmeRs were designed and ordered from Exigon.
Five different oligos were tested per LINCM for KD efficiency by gPCR at 48 h
post transfection and the oligo with the best LINCM KD efficiency was used
for subsequent experiments. Isolated TAC adult CMs were transfected with
lipofectamine/GapmeR at a concentration of 100 nM and RNA extracted 48 h post
transfection. Crucially, fetal reprogramming gene (Nppa) was highly upregulated
(average ~27x) in TAC CM compared to Sham CM at the time of RNA harvest,
indicating that during the short period in culture, the stress gene response
remained intact in the isolated TAC cells. Negative control oligo with no known
mRNA, IncRNA, miRNA targets in mouse or humans as well as mock-transfected
cells (lipofectamine only) were used as negative controls. Five independent
biological replicates were performed for each gPCR experiment. Each
experiment had validated KD of target LINCM. Sequences of GapmeRs used
are as follows: 5'-3".

Gas5 KD: AGAACTGGAAATAAGA

Sghrt KD: TTCGGAACTTGAAGGA

Negative control KD: AACACGTCTATACGC

Real-time qPCR after knockdown of LINCMs. SuperScript III First-Strand
Synthesis Reverse Transcriptase (Life Technologies) was used to reverse transcribe
poly(A) RNA to cDNA. qPCR reactions were performed using SYBR Green master
mix (SensiFAST, Bioline) in a LightCycler 480 machine (Roche). Threshold

cycle (Ct) and melting curve measurements were determined by LightCycler

480 software. Each qPCR sample had at least three technical replicates on the same
qPCR plate. Rplp0 was used as housekeeping gene and Ct values were normalized
to mock-transfected (no oligo, lipofectamine only) samples. P values from
Student’s t-test and error bars represent s.e.m. Five biological replicates of adult
isolated TAC CMs were used for qPCR analysis of each gene. Primers used are
listed in Supplementary Table 5.

Sequencing libraries QC. We used well established quality-control tools such as
CASAVA version 1.8.2 (Illumina), FASTQC (Babraham Bioinformatics) and
Trimmomatic®® to filter raw reads. Filtered reads were aligned to mouse genome
(Mus Musculus) mm9 assembly using mapping software, Tophat v2.0.9 with
Bowtie2 using default settings®® °*, We provided mm9 ensembl 65 (version 1) GTF
annotation to Tophat for mapping with -G option. To ensure only high quality
libraries are used for analysis, single nuclear RNAseq samples with <40% mapping
were excluded from subsequent downstream analyses. Transcript expression levels
were calculated in FPKM by turning on fragment bias correction parameter (-b)
and multi-read correction (-u) using Cufflinks v2.1.16'. We applied a stringent
expression threshold by regarding transcript with FPKM lower than 4 to be
non-expressing. Only genes that were expressed with FPKM >4 in at least

5 samples were considered for our subsequent analyses.

Core cardiac genes discovery. Genes in each sample were sorted based on FPKM
values from highest FPKM to lowest FPKM. Each gene was assigned a rank based
on the sorted order. The gene with the highest FPKM was assigned a rank of 1.
We defined core cardiac genes as genes that were to found to be expressed in all
Sham-operated nuclei at FPKM > 4 and displayed ordered rank within top 500 in
all samples.

Coefficient of variation vs average FPKM plot. We calculated the CoV, also
known as normalized s.d. We defined CoV as the ratio of s.d. of FPKM value and
mean FPKM value across all samples for each condition (Sham or TAC). CoV vs
Average FPKM scatterplot of all expressed genes was generated with each point
representing a single gene.
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Hierarchical clustering and expression heatmap. We used custom R function
hclust to hierarchically cluster the samples based on the pearson correlations
between samples. The hierarchical dendrogram was cut at a height of 0.75. This
resulted in four branches of samples, which we defined as 4 distinct subgroups of
cardiomyocytes, i.e., Sham A, Sham B, TAC A, and TAC B. The hierarchical tree
was visualized using R package A2R, where each of the four sub-group was colored
differently for visualization purpose. Expression heatmaps represented row-scaled
log, (FPKM + 1) values, where high intensity blue represents high expression while
high intensity yellow represents low expression. The resulting subgroups were
cross-validated using PCA. We transformed the FPKM values of each gene to
have 0 mean and unit variance across all samples in order to compare variability
patterns across genes with different overall abundance in the population. We used
custom R function prcomp to perform PCA analysis. The largest three principal
components are visualized in a three-dimensional scatterplot using R-package
scatterplot3d version 0.3.35%%. To confirm the presence of 4 subgroups, we also
calculated a correlation matrix based on the log, (FPKM + 1) values, and visualized
the correlation, r value in a correlation heatmap.

Correlation density. We calculated pairwise correlation between each sample in
each condition (Sham and TAC). In order to assess the distribution of the
correlation value, we plotted density plot, where each condition is colored
differently. To test for significant changes in distributions of correlation between
Sham samples and TAC single nuclear RNA-seq samples, we used Mann-Whitney
U 2-sided test as we do not assume normal distribution of correlation in single
nuclear RNA-seq or any particular direction of change.

Saturation analysis. Using samtools version 0.1.19, saturation analysis was
performed by randomly sub-sampling different number of reads from individual
sample, and re-calculating the FPKM value for each genes. The process of
sub-sampling was repeated until there were at least 10 subsampled data sets per
point with increasing library size.

Correlation saturation analysis. We randomly selected a pre-defined number of
samples out of all available single-nuclear RNAseq samples to calculate average
FPKM expression levels per gene. The average expression values were used to
calculate coefficient of correlation with bulk tissue and pooled nuclei RNAseq
expression level. We used pre-defined sets of 2, 5, 10, 15, 20, 25, 30, and 35 samples
from the single-nuclear RNAseq samples with 10 replicates per set.

In silico pooled cardiomyocyte nuclear RNAseq. Using samtools version 0.1.19,
we pooled all of the mapped reads from the Sham and TAC single-nuclear RNAseq
samples into Sham and TAC pooled nuclei respectively. 8 M reads (amount
equivalent to average mapped reads in Sham samples in Batch 1) were subsampled
randomly from Sham pooled nuclei, and 6 M reads (amount equivalent to average
mapped reads in TAC samples in batch 1) were subsampled randomly from TAC
pooled nuclei to generate pooled nuclei library with matched sequencing depth. 60
aggregated in silico pooled RNAseq samples were generated each for Sham and
TAC to calculate average FPKM per gene for comparisons with single nuclear
RNAseq and matched bulk tissue RNAseq.

Weighted gene correlation network analysis. Using WGCNAZ, we started the
construction of a signed weighted correlation network by computing pairwise
correlations between all genes across all single-nuclear RNAseq samples. Next, we
chose soft thresholding power (f=6), in constructing an adjacency matrix using
the formula, uij:(0.5+0.5><sij)ﬂ, where a;; is defined as weighted correlation and s;; is
defined coefficient correlation between gene; and gene;. We choose the power (f=
6), which is the lowest power for which the scale-free topology fit index curve
flattens out upon reaching a high value of 0.98. Using the adjacency matrix
computed in the previous step, topological overlap was calculated to measure

the network interconnectedness in a robust and biological meaningful way. The
topological overlap was utilized to group highly correlated genes together using
average linkage hierarchical clustering. Modules were defined as the branches
obtained by cutting the hierarchal tree using Dynamic Hybrid Tree Cut algo-
rithm®. We defined the first principle component of a module as module
eigengene, which is representative of the expression profile in each module. Genes
in each module were removed if the correlation between the gene and module
eigengene (kME) is <0.3. If a detected module did not have at least 5 genes with
eigengene connectivity (kME) at least 0.5, the module was disbanded and its genes
were unlabeled and returned to the pool of genes to await module detection.
Modules whose eigengenes were highly correlated (correlation above 0.75) were
merged. Construction of signed gene network and identification of modules were
performed using R function, blockwiseModules with following parameters: soft
thresholding power = 3, minimum module size = 15, mergeCutHeight = 0.25,
corType = “Pearson”, networkType = “signed”, TOMType = “signed”, minCor-
eKME = 0.5, and minKMEtoStay = 0.3.
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External clinical traits and hub gene identification. To identify modules

that were significantly correlating with subgroups, we computed correlation of
eigengenes of each module with all subgroup and picked the most significant
associations as subgroup-specific modules. For visualization purpose, the
correlation values are presented in a table matrix and color-coded based on the
correlation values. In addition, we also computed gene significance (GS), defined
as the correlation of each gene with each subgroup?®. We calculated module
membership (MM), defined as the correlation between module eigengene and gene
expression profile. GS and MM are important because they help in the
identification of genes with high significance for each subgroup and high module
membership in each subgroup-specific module. Module membership is highly
correlated to the intramodular connectivity, kyg. Highly connected intramodular
hub genes tend to have high module membership values to the respective
module?.

Exporting modules to cytoscape for network visualization. We used R function
exportNetworkToCytoscape to export the gene network for healthy, disease 1 and
disease 2 modules to Cytoscape.

Discovery of LINCMs. We used Cufflinks version 2.1.1 to perform novel transcript
discovery in each nuclei after masking out all protein-coding genes, with default
parameters. All of the predicted assemblies from all nuclei were merged using
Cuffmerge version 2.1.1. The predicted transcripts in the merged assembly were
checked for coding potential with CPAT?”. CPAT uses a logistic regression
model built with four sequence features for protein-coding potential prediction,
including open reading frame size, open reading frame coverage, Fickett
TESTCODE statistic, and hexamer usage bias. CPAT reports the protein-coding
probability score in the range between 0 and 1, but the optimum probability cutoff
varies with different organism. For mouse, we used optimum cutoff determined
from TG-ROC (coding probability > 0.44) to classify our candidate lincRNA as
coding or non-coding RNA. After filtering transcripts with coding potential,

we looked for overlap between our predicted assembly and publicly available
IncRNA databases such as NONCODE mm9 version 4 and GENCODE mm9
version MI1. Next, we filtered away transcripts shorter than 200 bp. Lastly, we
exclude transcripts with FPKM < 4 in <5 samples. In order to ensure the
reproducibility of results, we repeated the above steps in the second replicate of
single-nuclei samples. Only those transcripts discovered in both batches of
sequencing were retained in subsequent analysis.

Quadrant analysis. We selected gene markers for a category of interest based on
current literature of cardiomyocyte biology, and used scatterplots to perform
pairwise comparisons of expression levels between two groups of genes, x and y.
FPKM of 4 was used as a threshold to divide each axis, resulting in 4 quadrants,
namely as QI (high expression of y genes, low expression of x genes), Q2

(high expression of both x and y genes), Q3 (low expression of x and y genes),
and Q4 (low expression of y genes and high expression of x genes). After defining
the sample distribution in each quadrant, we performed pairwise differential
expression analysis between samples of different quadrants to look for enriched
genes within each quadrant. For human quadrant analyses, we included 4 addi-
tional DCM patients and 2 additional controls to make a total of 5 DCM patients
and 3 controls.

Differential expression analysis for quadrant analysis. Differential expression
analyses between quadrants were performed using exact test in R version 3.0.0
DESeq version 1.12.1%4,

Data availability. Sequence data that support the findings of this study have been
deposited in NCBI SRA SRP049944, under the BioProject code PRINA264588. The
data that support the findings of this study are available from the authors on
reasonable request.
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